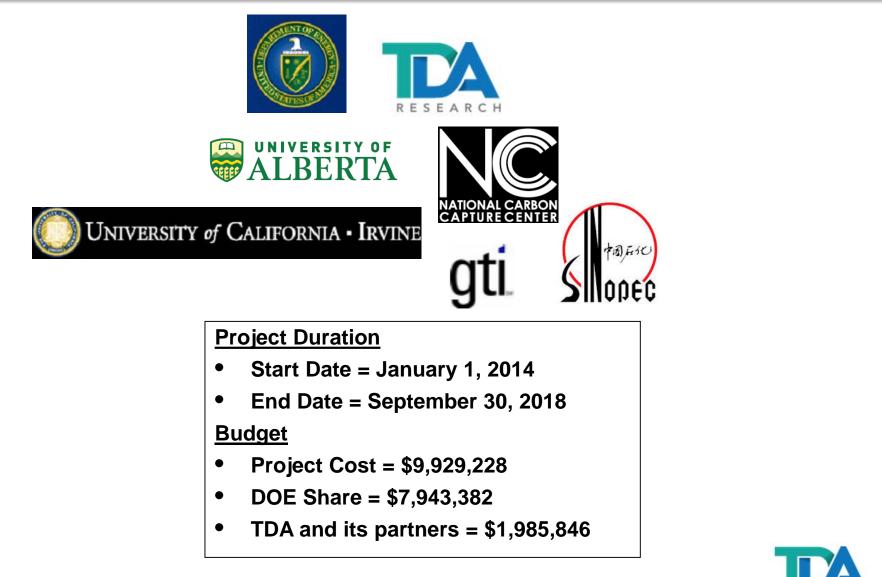
Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

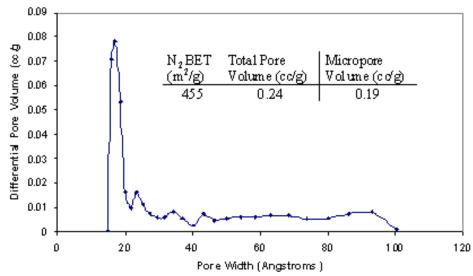
Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matt Cates Mike Bonnema Jim Dippo David Gribble Byron Wall

2017 CO₂ Capture Technology Meeting August 22, 2017


TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

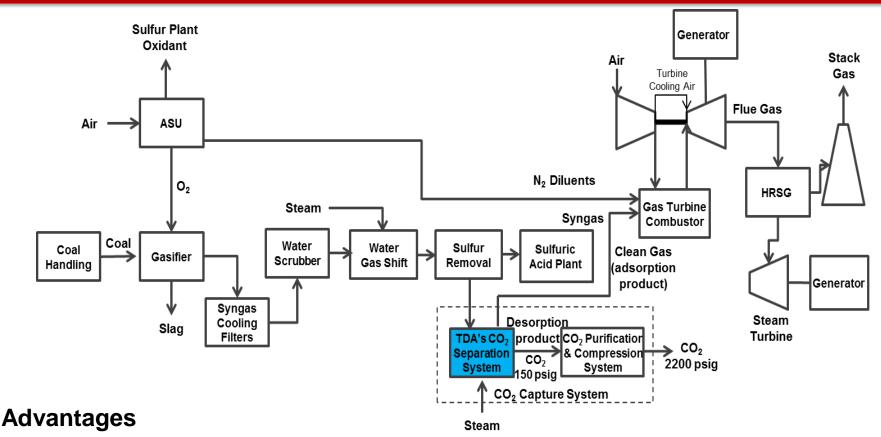
- The objective is to develop a new sorbent-based pre-combustion capture technology for Integrated Gasification Combined Cycle (IGCC) power plants
- Demonstrate techno-economic viability of the new technology by:
 - 1) Assessing the technical feasibility in 0.1 MW_e pilot-scale tests
 - 2) Carrying out high fidelity process design and engineering analysis
- Major Project Tasks
 - Sorbent Manufacturing
 - Performance validation via long-term cycling tests
 - Reactor Design
 - CFD Analysis and PSA cycle optimization with adsorption modeling
 - Fabricate a Pilot-scale Prototype for Demonstration
 - Evaluations at various sites using coal-derived synthesis gas
 - Techno-economic analysis
 - High fidelity engineering analysis and process simulation



Project Partners

TDA's Approach

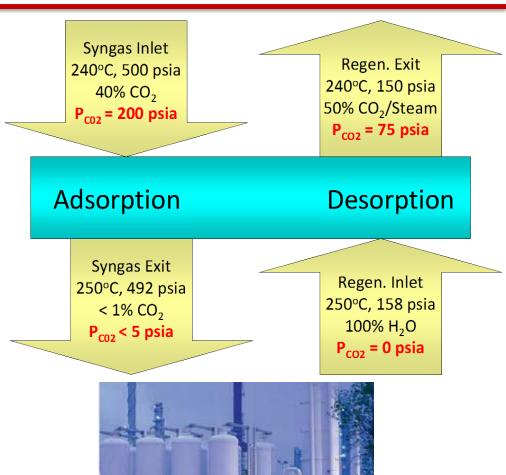
- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Comparable to that of Selexol's
- Net energy loss in sorbent regeneration is similar to Selexol, but a much higher IGCC efficiency can be achieved due to high temperature CO₂ capture



- Pore size can be finely tuned in the 10 to 100 A range
- Mesopores eliminates diffusion limitations and rapid mass transfer, while enables high surface area

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion Carbon Dioxide Capture System Using a Regenerable Sorbent"

Integration to the IGCC Power Plant



- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution hence lower NO_X formation
- Elimination of heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Potential for further efficiency improvements via integration with WGS

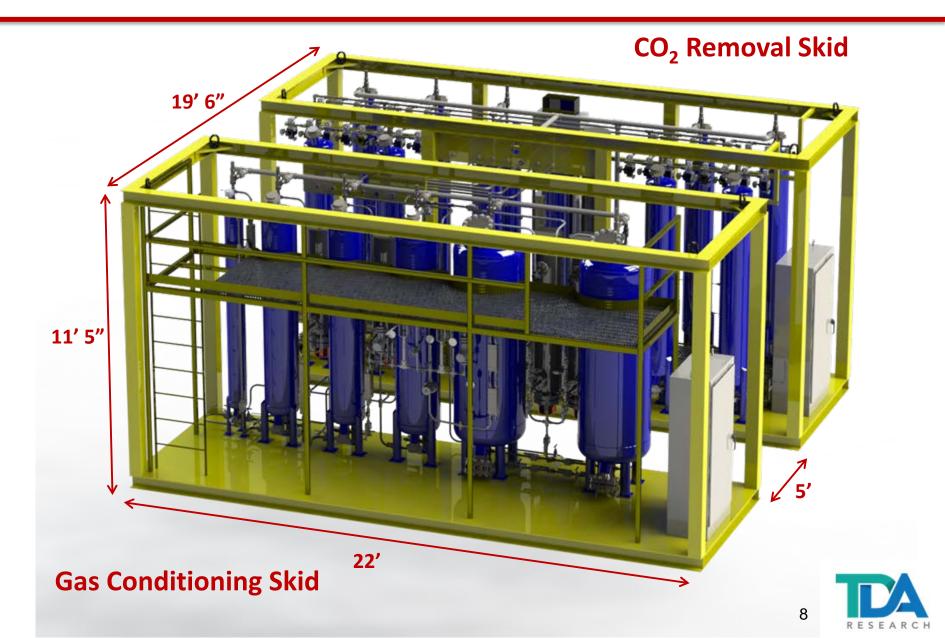
Operating Conditions

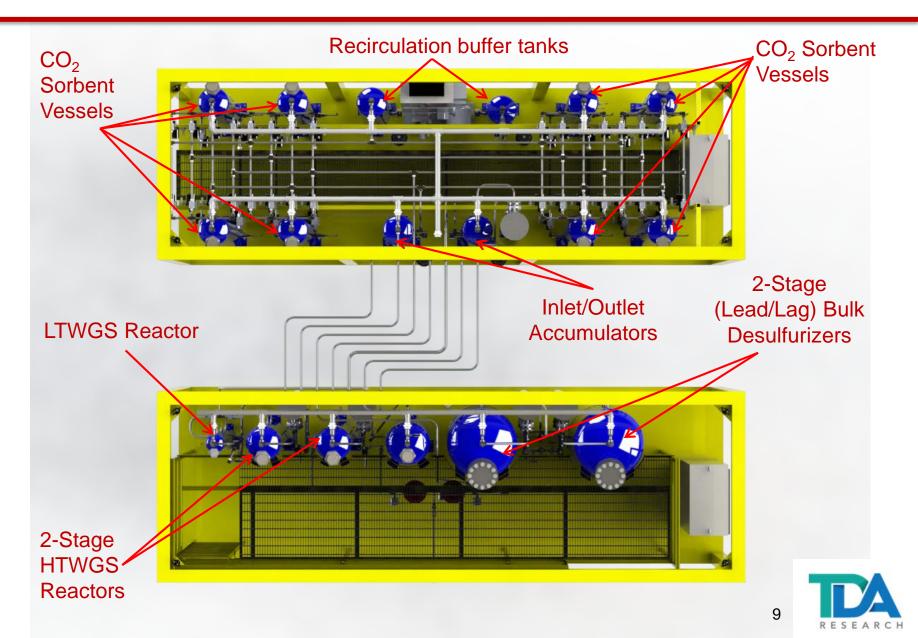
- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Source: Honeywell/UOP

Primary Focus

- 0.1 MW_e evaluation in a world class IGCC plant to demonstrate full benefits of the technology
- Demonstrate full operation scheme
 - All reactors and accumulators
 - Utilize product/inert gas purges
 - \square H₂ recovery/CO₂ purity
- Long-term performance tests using synthesis gas from an oxy-blown gasifier
- Evaluations at various sites using coal-derived synthesis gas
 - Field Test #1 at NCCC Air blown gasification
 - Field Test #2 at Sinopec Yangtzi Chemicals Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification


National Carbon Capture Center


Sinopec/Yangtzi Chemicals Petrochemical Complex

0.1 MW Pilot Unit Design

Slipstream Test Skid - Top View

Field Test Units

- Completed the fabrication of the Field Evaluation units in September 2016
- All troubleshooting and shakedowns are completed in December 2016

Sorbent and Catalyst for Field Tests

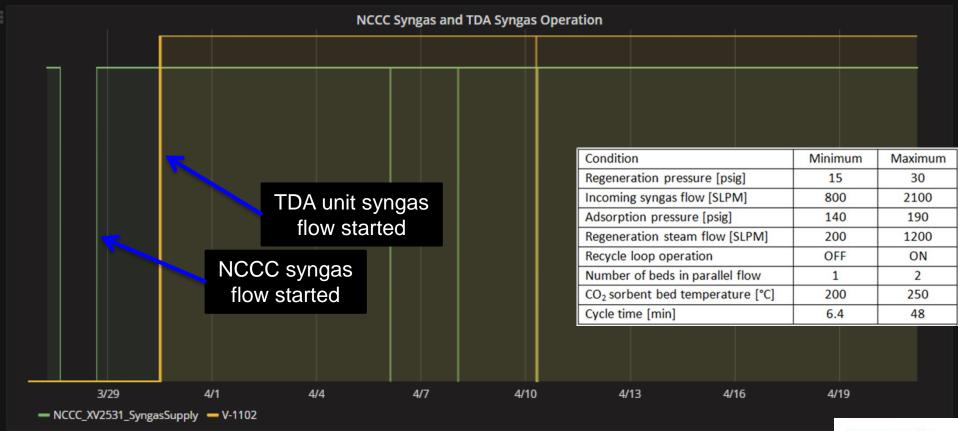
Sulfur Sorbent and WGS Catalyst


CO₂ Sorbent for Field Tests

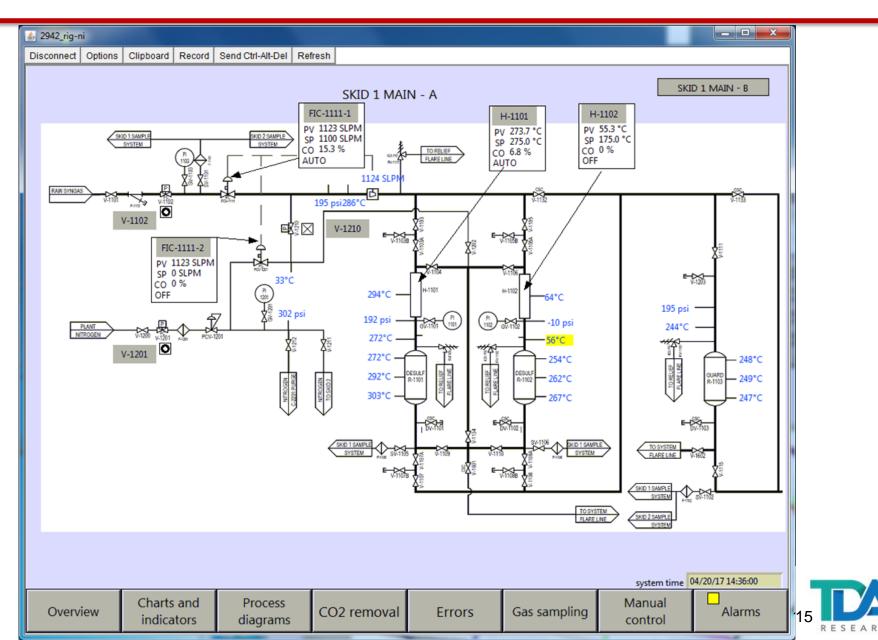
- 2 m³ of TDA's CO₂ sorbent has been produced for use in the field tests
- Warm gas Sulfur removal sorbent and High and Low Temperature WGS catalysts have been procured from Clariant

Field Unit Installation at NCCC

Field Test Unit Installed at NCCC

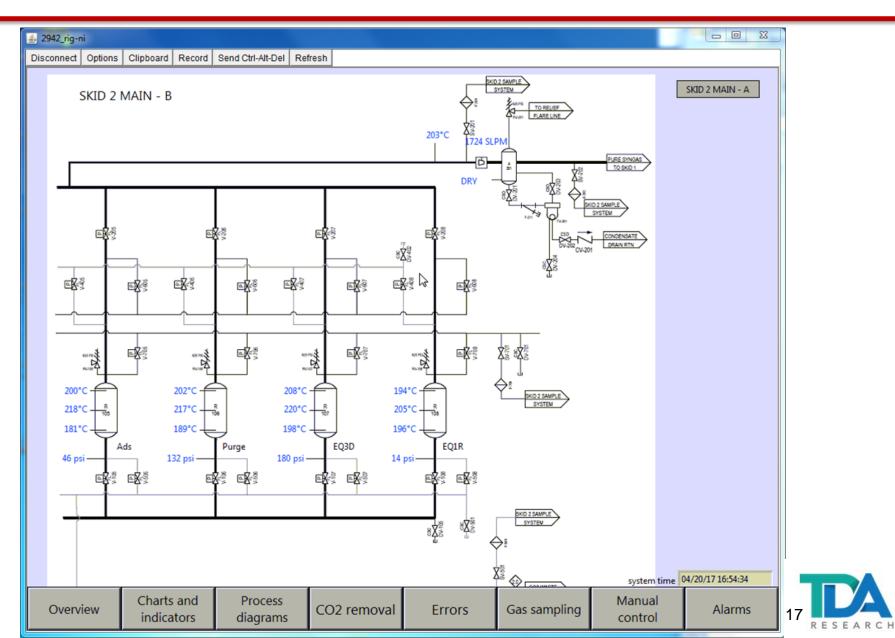


- Installation with all the hook-ups were completed in March 2017
- Testing started on March 30, 2017

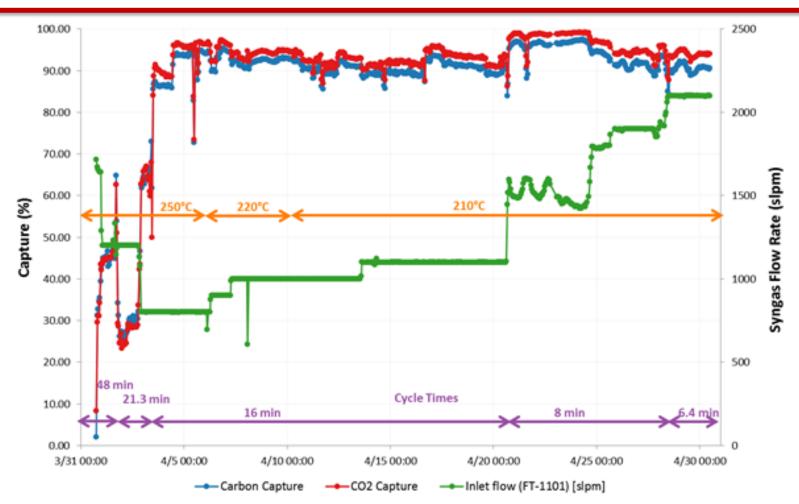

Operation with Synthesis Gas

- NCCC started synthesis gas flow on 3/28/17 at 18:00
- **D** TDA started the operation of its unit on 3/30/17 at 15:30
- **Both systems are operating well without any interruptions**

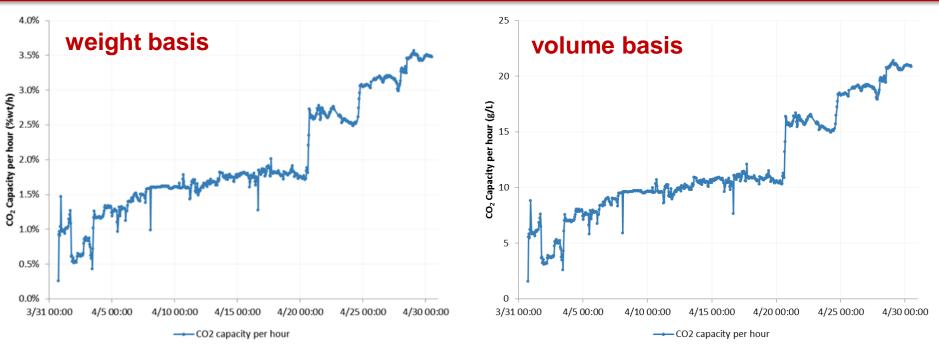
Sulfur Removal Skid Conditions



WGS Reactors Operating Conditions

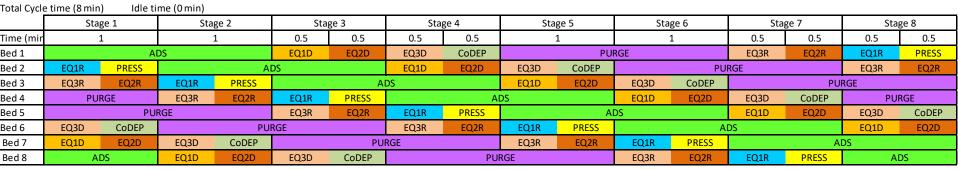


PSA System Operating Conditions

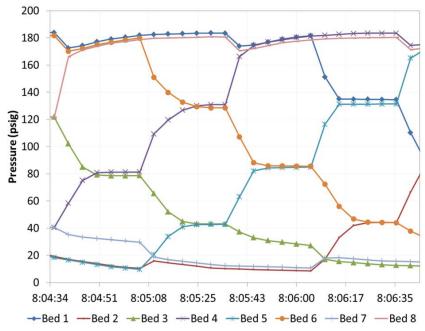

Test Summary

- 707 hrs of continuous operation at 90+% carbon capture
 - 97.3% capture @ 1,500 SLPM; 93% @ 1,800 SLPM; 90% @ 2,100 SLPM
 - Design flow at NCCC operating conditions was 1,360 SLPM (48 SCFM)

Working Capacity of the Sorbent



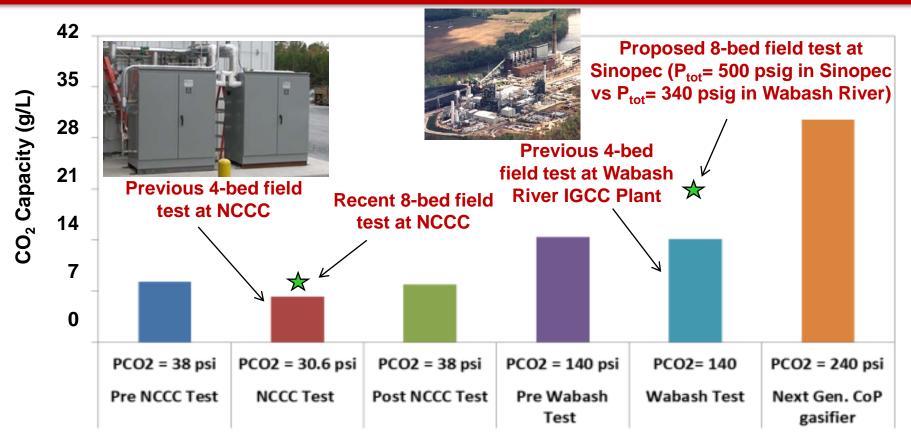
- Sorbent's working capacity increased during the course of the test by:
 - Reducing the cycle time
 - Increasing syngas flow rate (main increase made possible by having parallel beds in adsorption and purge steps)
- Pressure drop through the gas conditioning skid prevented flowing more than 2,100 SLPM of syngas through the PSA skids
 - In the next field test at Sinopec we will change our flow control valve to further increase the flow



Cycle Scheme with Parallel Flows

• BP2 – PSA Cycle Scheme – 8 min full cycles – 0 min hold time

- Optimized cycle scheme uses parallel flow through two beds during adsorption and purge steps
 - Space velocity is half of the BP1 cycle scheme
 - Eliminated any hold time and minimized time for supporting steps
 - Reduces the pressure drop and allows higher syngas flow
- Tested parallel flow scheme at NCCC and showed 50% higher bed utilization


Summary

	Design		Actual
	Sinopec	NCCC	NCCC
Syngas Flow to DeS/WGS Skid (SCFM)	73	43	53
Syngas Flow to CO ₂ PSA Skid (SCFM)	100	48	57
Steam Added for WGS RxN (SCFM)	27.2	4.1	4.3
CO ₂ Capture (kg/hr)	105.3	25	29.6
Cycle Time (min)	16	16	8
PCO ₂ (psi)	175.1	29.1	28.8
Bed Utilization (g CO ₂ /L-hr)	65.8	15.9	18.5

- We successfully operated the 8-bed PSA unit with real coal derived syngas
- Test unit achieved ~17% higher CO₂ capture than the design performance
 - Due to improvements in cycle scheme and sorbent capacity
- High pressure drop caused by the gas conditioning skid limited even higher performance
- Minor system modifications are scheduled for September 2017 to achieve higher flows in Sinopec test (while the pressure drop will not be as much as we observed at NCCC)

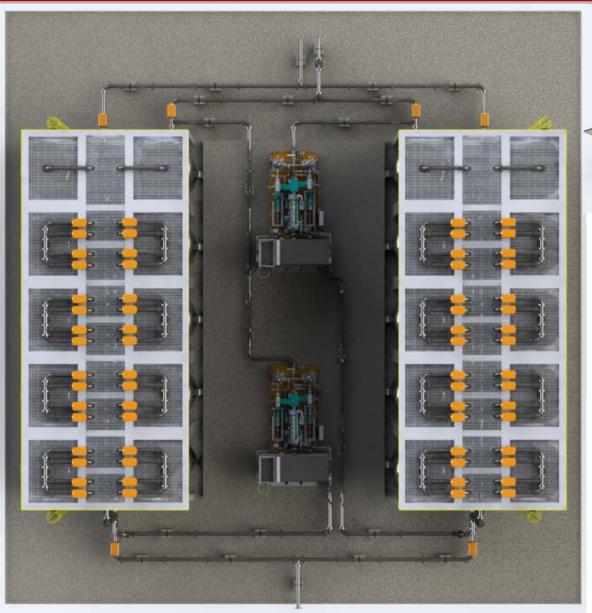
Bed Capacity Comparison

- Sorbent maintained higher CO₂ capacity than the earlier NCCC field tests at ~60X scale
- At Sinopec the system is expected to achieve significantly higher capacity than it had achieved in the previous oxy-fired gasification tests at Wabash River IGCC power plant

Reactor Design

- Different reactor concepts have been evaluated
- Multiple train vertical reactor configuration with internal flow distribution is selected for final design

GE Gasifier		
Syngas flow, kmol/h	34,747	
Sorbent needed, kg	1,115,903	
L	1,859,838	
Cycle time, min	8	
Ads. GHSV, h ⁻¹	1,117	
Total Beds	16	
Bed. Volume, L	116,240	
Bed Dimensions		
Diameter, ft	14	
Length, ft	30.1	
Vessel wall thickness, in	5.0	
L/D	2.30	
Particle size, in	1/8	
Bed Pressure drop, psid	3.6	


TDA Design


Source: Honeywell/UOP

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~780,000 m³/hr syngas flow rate for the based case used in TEA)

Full-scale System Design

Major Units

- 8 beds x 2 = 16
- 2 accumulator X 2 = 4
- Cycling Valves
 - $6 \times 8 \times 2 = 96$
- 2 recycle compressors
- 2 isolation vales x 2 per train = 4

E-Gas[™] & GE Gasifiers

Gasifier	E-Gas		GE	
Case	1	2	3	4
	Cold Gas Cleanup	Warm Gas Cleanup	Cold Gas Cleanup	Warm Gas Cleanup
CO ₂ Capture Technology	Selexol [™]	TDA's CO ₂ Sorbent	Selexol [™]	TDA's CO ₂ Sorbent
CO ₂ Capture, %	90	90	90	90
Gross Power Generated, kW	710,789	670,056	727,633	674,331
Gas Turbine Power	464,000	425,605	464,000	417,554
Steam Turbine Power	246,789	244,450	257,657	246,746
Syngas Expander Power	-	-	5,977	10,031
Auxiliary Load, kW	194,473	124,138	192,546	120,661
Net Power, kW	516,316	545,917	535,087	553,671
Net Plant Efficiency, % HHV	31.0	34.1	32.0	34.5
Coal Feed Rate, kg/h	220,549	212,265	221,917	213,013
Raw Water Usage, GPM/MW	10.9	10.3	10.7	10.5
Total Plant Cost, \$/kW	3,464	3,102	3,359	3,212
COE without CO ₂ TS&M, \$/MWh	136.8	122.3	133.0	125.5
COE with CO ₂ TS&M, \$/MWh	145.7	130.4	141.6	133.4
Cost of CO ₂ Capture, \$/tonne	43	30	37	31

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (34.5% and 34.1%) than IGCC with Selexol[™] (32.0% and 31.0%)
- Cost of CO₂ capture excluding TS&M is calculated as \$31 and \$30 per tonne for GE and E-Gas[™] gasifiers, respectively (16-30% reduction against Selexol[™])
- DOE target of \$40 per tonne is reached even with TS&M included

Shell & TRIG Gasifiers

Gasifier	Shell		TRIG	
Case	5	6	7	8
	Cold Gas Cleanup	Warm Gas Cleanup	Cold Gas Cleanup	Warm Gas Cleanup
CO ₂ Capture Technology	Selexol [™]	TDA's CO ₂ Sorbent	Selexol [™]	TDA's CO ₂ Sorbent
CO ₂ Capture, %	90	90	83	83
Gross Power Generated, kW	672,576	619,214	621,595	617,159
Gas Turbine Power	464,000	416,396	424,616	413,635
Steam Turbine Power	208,576	202,817	196,979	203,524
Syngas Expander Power	-	-	-	-
Auxiliary Load, kW	176,753	111,347	163,837	124,104
Net Power, kW	495,823	507,867	461,808	493,056
Net Plant Efficiency, % HHV	30.8	33.4	31.5	34.5
Coal Feed Rate, kg/h	213,397	201,426	262,700	258,882
Raw Water Usage, GPM/MW	9.9	10.8	8.3	9.6
Total Plant Cost, \$/kW	3,893	3,612	3,728	3,353
COE without CO ₂ TS&M, \$/MWh	149.6	140.2	124.7	113.0
COE with CO ₂ TS&M, \$/MWh	158.4	148.4	143.6	130.3
Cost of CO ₂ Capture, \$/tonne	47	40	39	28

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (33.4% and 34.5%) than IGCC with Selexol[™] (30.8% and 31.5%)
- Cost of CO₂ capture is calculated as \$40 and \$28 per tonne for Shell and TRIG gasifiers, respectively (15-28% reduction against Selexol[™])

Acknowledgements

- DOE/NETL funding provided the DE-FE-0013105 project is greatly acknowledged
- Project Manager, Andy O'Palko

